Skip to main content


Showing posts from May, 2014

Existential Types are the flip side of generics

Generic types, as can now be seen in all the major programming languages have a flip side that has yet to be widely appreciated: existential types.

Variables whose types are generic may not be modified within a generic function (or class): they can be kept in variables, they can be passed to other functions (provided they too have been supplied to the generic function), but other than that they are opaque. Again, when a generic function (or class) is used, then the actual type binding for the generic must be provided – although that type may also be generic, in which case the enclosing entity must also be generic.

Existential types are often motivated by modules. A module can be seen to be equivalent to a record with its included functions: except that modules also typically encapsulate types too. Abstract data types are a closely related topic that also naturally connect to existential types (there is an old but still very relevant and readable article on the topic Abstract types have …