Skip to main content

Robotic Wisdom

It seems to me that one of the basic questions that haunt AI researchers is 'what have we missed?' Assuming that the goal of AI is to create intelligence with similar performance to natural intelligence; what are the key ingredients to such a capability?

There is an old saw
It takes 10,000 hours to master a skill

There is a lot of truth to that; it effectively amounts to 10 years of more-or-less full-time focus. This has been demonstrated for many fields of activity from learning an instrument, learning a language or learning to program.

But it does not take 10,000 hours to figure out if it is raining outside, and to decide to carry an umbrella. What is the difference?

One informal way of distinguishing the two forms of learning is to categorize one as `muscle memory' and the other as 'declarative memory'. Typically, skills take a lot of practice to acquire, whereas declarative learning is instant. Skills are more permanent too: you tend not to forget a skill; but it is easy to forget where one left one's keys.

Another way of viewing the difference between skills and declarative knowledge is that skills are oriented towards action and declarative knowledge is oriented towards reflection and analysis. Deciding to carry an umbrella depends on being able to ruminate on the observed world; it has little to do with skills (normally).

Today, most machine learning is based on techniques that have more in common with skill learning than with declarative learning.

Anyway, let us assume that both forms of learning are important. Is that enough for high performance? One factor that is obviously also necessary is action.

The issues with action are complementary to those of learning: there are many possible actions that an agent can perform but most of those are either useless or have negative consequences. Early robots did not perform very well because researchers believed that the same mechanisms needed to plan were also needed to act. That is the moral equivalent of planning the movements of one's leg muscles in order to walk to the front door.

It think that is may be useful to think that emotions are a mechanism that help animals and people to act. (This is not an original idea of course.) In this view, emotions drive goals; which in turn drive the actions that animals and people perform. The connection is direct; in much the same way that skills are directly encoded in muscle.

For our purposes the exact basis of emotions is not relevant. However, the field of affective computing has used a bio-chemical response/decay model for modeling how emotions arise and fade.

What then, is wisdom. If emotions provide a way of rapidly and fluidly motivating action, the declarative dimension accounts for reflection on emotions: in the same way that declarative memory allows for reflection on perception.

It seems to me that, if this is right, we should be able to build a wise robot: by allowing it to reflect on its emotions. For example, a robot might decide that acting too quickly when it encounters a threat situation may not always be conducive to its own survival; much in the same way that it concludes that it is raining when it gets wet.

Popular posts from this blog

Minimum Viable Product

When was the last time you complained about the food in a restaurant? I thought so. Most people will complain if they are offended by the quality or service; but if the food and/or service is just underwhelming then they won't complain, they will simply not return to the restaurant. The same applies to software products, or to products of any kind. You will only get negative feedback from customers if they care enough to make the effort. In the meantime you are both losing out on opportunities and failing your core professional obligation. Minimum Viable Product speaks to a desire to make your customers design your product for you. But, to me, it represents a combination of an implicit insult and negligence. The insult is implicit in the term minimum. The image is one of laziness and contempt: just throw some mud on the wall and see if it sticks. Who cares about whether it meets a real need, or whether the customer is actually served. The negligence is more subtle but, in the end,

Comments Should be Meaningless

This is something of a counterintuitive idea: Comments should be meaningless What, I hear you ask, are you talking about? Comments should communicate to the reader! At least that is the received conventional wisdom handed does over the last few centuries (decades at least). Well, certainly, if you are programming in Assembler, or C, then yes, comments should convey meaning because the programming language cannot So, conversely, as a comment on the programming language itself, anytime the programmer feels the imperative to write a meaningful comment it is because the language is not able to convey the intent of the programmer. I have already noticed that I write far fewer comments in my Java programs than in my C programs.  That is because Java is able to capture more of my meaning and comments would be superfluous. So, if a language were able to capture all of my intentions, I would never need to write a comment. Hence the title of this blog.

In Praise of Crappy Code

Not all code needs to be perfect! This is pretty heretical thinking for a software engineer. The issue is simple: how do you go about developing software for a small fixed budget. Imagine that you have $500 to implement a solution to a problem. If you spend more than that you will never recoup the extra that you spent. This comes up a lot in systems integration scenarios and also in customization efforts. Someone wants you to 'tweak' an application that they are using; you know that no-one else would want that feature and that if you spend more than what the customer will pay you will end up losing money. From the customer's perspective, the common 'time and materials' approach to quoting for software development is a nightmare. Being able to offer a fixed price contract for a task is a big benefit for the customer. But, how much do you quote for? Too much and you scare the customer away. Too little and you lose money. This is where 'crappy code' com