Skip to main content

Existential Types are the flip side of generics

Generic types, as can now be seen in all the major programming languages have a flip side that has yet to be widely appreciated: existential types.

Variables whose types are generic may not be modified within a generic function (or class): they can be kept in variables, they can be passed to other functions (provided they too have been supplied to the generic function), but other than that they are opaque. Again, when a generic function (or class) is used, then the actual type binding for the generic must be provided – although that type may also be generic, in which case the enclosing entity must also be generic.

Existential types are often motivated by modules. A module can be seen to be equivalent to a record with its included functions: except that modules also typically encapsulate types too. Abstract data types are a closely related topic that also naturally connect to existential types (there is an old but still very relevant and readable article on the topic Abstract types have existential type)

One way that I like to visualize existential types is that of a box with a type inside it. As a programmer using the box, you know there is a type in there, it has a name and it has a set of functions that reference the type but you know nothing about its actual realization.

Existsbox

Inside the box, you know what type foo is, and it can be any type so long as the other functions in the contract are implemented appropriately.

Outside the box you know nothing about the foo type. What this means is that any program text that uses the type from the box is strictly limited in what it can do: it is limited essentially to passing foo values around and to invoking other functions from the same box.

Thus, existentials and universals have a complementary role in programming: generics are used when the entity being defined must be general purpose. Existentials should be used when the use of the entity should be generic.

An excellent example of where this might be useful is in frameworks such as testing frameworks.

Existstest

Most test frameworks are pretty lame: you define a bunch of void functions with embedded assertions. A full test framework with existentials could be designed to test arbitrary functions and/or classes. All that the programmer would need to do to use such a framework to test her programs would be to invoke it!

A final note about existentials: they represent a neat way of characterizing system or built-in types. For example, the string type can be viewed as an existentially quantified type whose implementation belongs to the compiler. The difference here is that there is typically only one privileged instantiation of string; however, it would be very convenient for a language system to be able to support multiple kinds of string with different implementation characteristics.

Popular posts from this blog

Minimum Viable Product

When was the last time you complained about the food in a restaurant? I thought so. Most people will complain if they are offended by the quality or service; but if the food and/or service is just underwhelming then they won't complain, they will simply not return to the restaurant. The same applies to software products, or to products of any kind. You will only get negative feedback from customers if they care enough to make the effort. In the meantime you are both losing out on opportunities and failing your core professional obligation. Minimum Viable Product speaks to a desire to make your customers design your product for you. But, to me, it represents a combination of an implicit insult and negligence. The insult is implicit in the term minimum. The image is one of laziness and contempt: just throw some mud on the wall and see if it sticks. Who cares about whether it meets a real need, or whether the customer is actually served. The negligence is more subtle but, in the end,

Comments Should be Meaningless

This is something of a counterintuitive idea: Comments should be meaningless What, I hear you ask, are you talking about? Comments should communicate to the reader! At least that is the received conventional wisdom handed does over the last few centuries (decades at least). Well, certainly, if you are programming in Assembler, or C, then yes, comments should convey meaning because the programming language cannot So, conversely, as a comment on the programming language itself, anytime the programmer feels the imperative to write a meaningful comment it is because the language is not able to convey the intent of the programmer. I have already noticed that I write far fewer comments in my Java programs than in my C programs.  That is because Java is able to capture more of my meaning and comments would be superfluous. So, if a language were able to capture all of my intentions, I would never need to write a comment. Hence the title of this blog.

In Praise of Crappy Code

Not all code needs to be perfect! This is pretty heretical thinking for a software engineer. The issue is simple: how do you go about developing software for a small fixed budget. Imagine that you have $500 to implement a solution to a problem. If you spend more than that you will never recoup the extra that you spent. This comes up a lot in systems integration scenarios and also in customization efforts. Someone wants you to 'tweak' an application that they are using; you know that no-one else would want that feature and that if you spend more than what the customer will pay you will end up losing money. From the customer's perspective, the common 'time and materials' approach to quoting for software development is a nightmare. Being able to offer a fixed price contract for a task is a big benefit for the customer. But, how much do you quote for? Too much and you scare the customer away. Too little and you lose money. This is where 'crappy code' com