Skip to main content

Single Inheritance and Other Modeling Conundrums

Sometimes a restriction in a programming language makes sense and no sense at all — all at the same time.

Modeling the real world



Think about the Java restrictions on the modeling of classes: a given class can only have one supertype and a given object's class is fixed for its lifetime.

From a programming language perspective these restrictions make a good deal of sense: all kinds of ambiguities are possible with multiple inheritance and the very idea of allowing an object to be 'rebased' fills the compiler writer with horror. (Though SmallTalk allows it.)

The problem is that, in real life, these things do happen. A 'natural' domain model is quite likely to come up with situations involving multiple inheritance and dynamic rebasing.

For example, a person can go from being a customer, to an employee, to a manager to being retired. A given person might be both an employee and a customer simultaneously (someone else may not be).

Given a domain that is as flexible as this one if forced to 'simulate' it in Java. I.e., one cannot use a Java class called Customer to represent a customer; because Java's idea of class is not rich enough to model the domain.

At the same time, the modeling is not random and a good architect will try to ensure some discipline in the application.

The logical conclusion is that large applications tend to contain a variant of 'the type system' where the domain model is represented. Java is used to implement the meta model, not the domain model.

This dynamic type system may or may not be based on a well founded model (such as that of description logic); but in any case the programming language is not helping as much as it should.

What is a language to do?


On the face of it, it seems that the logical thing is to make a programming language's type system sufficiently flexible to actually model real world scenarios.

However, there is a difficulty with that: it is not the case that any one modeling system is best suited to all applications. In addition, a modeling system that is well-suited to modeling domain knowledge is not guaranteed to be equally well suited to regular programming tasks.

A better approach is to embrace diversity. A combination of DSLs and libraries enable one to build out a particular modeling system and to support the programmer with direct appropriate syntax.

For example, this pseudo-code example:

customer isa person
customer has account
...
person has name
...
C instance of customer
...
if overdrawn(C's account) then
...

shows one example of a modeled customer. The 'actual' code implied by this fragment might look like:

C : object;
...
if overdrawn(findAttribute(C,"account")) then
...


The principal point here is that the syntactic sugar offered by a DSL is not mere syntactic sugar: it can help the application programmer to use a language that is appropriate for her needs while at the same time enforcing sanity checks implied by the particular modeling language.

At the same time, there is no implied permanent commitment to one particular way of modeling with the host language.

Popular posts from this blog

Comments Should be Meaningless

This is something of a counterintuitive idea: Comments should be meaningless What, I hear you ask, are you talking about? Comments should communicate to the reader! At least that is the received conventional wisdom handed does over the last few centuries (decades at least). Well, certainly, if you are programming in Assembler, or C, then yes, comments should convey meaning because the programming language cannot So, conversely, as a comment on the programming language itself, anytime the programmer feels the imperative to write a meaningful comment it is because the language is not able to convey the intent of the programmer. I have already noticed that I write far fewer comments in my Java programs than in my C programs.  That is because Java is able to capture more of my meaning and comments would be superfluous. So, if a language were able to capture all of my intentions, I would never need to write a comment. Hence the title of this blog.

Another thought about Turing and Brooks

Rodney Brooks once wrote that robots would be human when treating them as though they were human was the most efficient way of interacting with them. (Not a precise quote.) This is an interesting variation on the Turing test. It assumes that we decide the smartness of machines in the context of frequent interactions with them. It also builds on an interesting idea: that in order to deal with another entity, be it human, animal or mineral, we naturally build an internal model of the entity: how it behaves, what it can do, how it is likely to react to stimuli etc. That model exists for all entities that we interact with; a rock is not likely to kick you back, your word processor will likely crash before you can save the document etc. When the most effective way to predict the behavior of a machine is to assume that it has similar internal structure to ourselves, then it will, for all intents and purposes, be human. So, here is another thought: how do we know that another human is human?...

Hook, Line and Sinker

It is well documented that people’s #1 fear is speaking in public ! Effective and efficient public speaking is a whole topic in its own right; but a few simple tips might help to both improve your effectiveness and help to reduce the anxiety. You may be called on to talk about your work at very short notice; or you may have a week’s notice; and you may be required to give a formal slide show or just a brief verbal update. Many, if not most of the issues, are the same. The Hook Newspaper editors call the first paragraph of an article ‘the hook’. Its meant to hook you into reading the rest of the piece. On the other hand, the classical ‘say what you are going to say, say it, and say what you said’ approach gives people plenty of time to switch off. The hook may be playful, it may be controversial, but it must communicate why the listener should pay attention. The Line Its a conversation! Even if no one says anything they are listening and thinking; and maybe replying to you in their head...