Skip to main content

The true role of domain specific languages

It is easy to be confused by the term domain specific language. It sounds like a fancy term for jargon. It is often interpreted to mean some form of specialized language. I would like to explore another role for them: as vehicles for policy statements.

In mathematics there are many examples of instances where it is easier to attack a problem by solving a more general, more uniform, problem and then specializing the result to get the desired answer.

It is very similar in programming: most programs take the form of a general mechanism paired with a policy that controls the machine. Taken seriously, you can see this effect down to the smallest example:
fact(n) where n>0 is n*fact(n-1);
fact(0) is 1

is a general machine for computing factorial; and the expression:fact(10) is a policy 'assertion' that specifies which particular use of the factorial machine is intended.

One important aspect of policies is that they need to be intelligible to the owner of the machine: unlike the machine itself which only needs to be trusted by the owner.

So, one critical role for a DSL is to be the policy language for the user of a mechanism.

Starting from this light leads to interesting conclusions. In particular, DSLs should be ubiquitous not rare; in particular, DSLs support the role that abstractions play in programming: by layering an appropriate syntax on top of the expression of the abstraction. It also means that programming languages should be designed to make it easy to construct and use DSLs within systems as well as externally.

A simple example: the query notation in Star, as well as in formalisms such as LINQ, may be better viewed as simple DSLs where the user is the programmer. The difference between these and more traditional DSLs is that the DSL expressions are embedded in the program rather than being separated from the code.

I think that embracing the DSL in this way should make it easier for a programming language to survive the evolution of programming itself. With an effective DSL mechanism a language 'extension' encoding a new language concept (for example, queries over C# or objects over C) and be done without invalidating the existing language. (The mechanisms in Star go further: it is possible to construct a DSL in Star that either augments the base language or even replaces it. We have used both approaches.)

It also explains why LISP's macro facilities have allowed it to survive today more-or-less unchanged (nearly 60 years after being invented) whereas languages like Java and C++ have had to undergo painful transitions in order to stay relevant.

Popular posts from this blog

Comments Should be Meaningless

This is something of a counterintuitive idea: Comments should be meaningless What, I hear you ask, are you talking about? Comments should communicate to the reader! At least that is the received conventional wisdom handed does over the last few centuries (decades at least). Well, certainly, if you are programming in Assembler, or C, then yes, comments should convey meaning because the programming language cannot So, conversely, as a comment on the programming language itself, anytime the programmer feels the imperative to write a meaningful comment it is because the language is not able to convey the intent of the programmer. I have already noticed that I write far fewer comments in my Java programs than in my C programs.  That is because Java is able to capture more of my meaning and comments would be superfluous. So, if a language were able to capture all of my intentions, I would never need to write a comment. Hence the title of this blog.

Organizing principles for services

One of the questions that comes up from time to time is how to define your services. This has come up for me in two independent fora: within the OASIS Service Oriented Architecture work and in the context of human provided services, for example at Genietown . In the work on the SOA Reference Model we decided that "services are the mechanism by which needs and capabilities are brought together"; i.e., its about needs and capabilities to satisfy those needs, and the access mechanism. However, this still begs the question somewhat. In the domain of human services, where the services are things like "building a home", "walking the dog", "taking care of my elderly parents"; it gets even fuzzier. Sometimes a service seems to organized around the person offering the service, for example, an architect, or a doctor. Sometimes the service is organized around a particular kind of product, such as doors or skylights. At other times, the service is organize...

About the right tools for the job

Some time ago I was involved in a running debate about whether we should be using Ruby on Rails rather than the Java stack (junkyard?) that we were using. At the time, I did not really participate in the discussion except to note that everything seemed to be at least 5 times too difficult. I had this strong intuition that there were so many moving parts that that was the problem. The application itself was not really that hard. My assertions really ticked some of my colleagues off; for which I apologize; sort of. I guess that I come from a tradition of high-level programming languages, by high level, I would say that I would consider LISP to be a medium level language, and Prolog is slightly better. I would say that it is a pretty common theme of my career that I end up having to defend the position of using high-level tools. I have gotten a number of arguments, ranging from "it will not be efficient enough" to "how do you expect to find enough XX programmers?". I u...