Skip to main content

The true role of domain specific languages

It is easy to be confused by the term domain specific language. It sounds like a fancy term for jargon. It is often interpreted to mean some form of specialized language. I would like to explore another role for them: as vehicles for policy statements.

In mathematics there are many examples of instances where it is easier to attack a problem by solving a more general, more uniform, problem and then specializing the result to get the desired answer.

It is very similar in programming: most programs take the form of a general mechanism paired with a policy that controls the machine. Taken seriously, you can see this effect down to the smallest example:
fact(n) where n>0 is n*fact(n-1);
fact(0) is 1

is a general machine for computing factorial; and the expression:fact(10) is a policy 'assertion' that specifies which particular use of the factorial machine is intended.

One important aspect of policies is that they need to be intelligible to the owner of the machine: unlike the machine itself which only needs to be trusted by the owner.

So, one critical role for a DSL is to be the policy language for the user of a mechanism.

Starting from this light leads to interesting conclusions. In particular, DSLs should be ubiquitous not rare; in particular, DSLs support the role that abstractions play in programming: by layering an appropriate syntax on top of the expression of the abstraction. It also means that programming languages should be designed to make it easy to construct and use DSLs within systems as well as externally.

A simple example: the query notation in Star, as well as in formalisms such as LINQ, may be better viewed as simple DSLs where the user is the programmer. The difference between these and more traditional DSLs is that the DSL expressions are embedded in the program rather than being separated from the code.

I think that embracing the DSL in this way should make it easier for a programming language to survive the evolution of programming itself. With an effective DSL mechanism a language 'extension' encoding a new language concept (for example, queries over C# or objects over C) and be done without invalidating the existing language. (The mechanisms in Star go further: it is possible to construct a DSL in Star that either augments the base language or even replaces it. We have used both approaches.)

It also explains why LISP's macro facilities have allowed it to survive today more-or-less unchanged (nearly 60 years after being invented) whereas languages like Java and C++ have had to undergo painful transitions in order to stay relevant.

Popular posts from this blog

Comments Should be Meaningless

This is something of a counterintuitive idea:
Comments should be meaningless
What, I hear you ask, are you talking about? Comments should communicate to the reader! At least that is the received conventional wisdom handed does over the last few centuries (decades at least).

Well, certainly, if you are programming in Assembler, or C, then yes, comments should convey meaning
because the programming language cannot
So, conversely, as a comment on the programming language itself, anytime the programmer feels the imperative to write a meaningful comment it is because the language is not able to convey the intent of the programmer.

I have already noticed that I write far fewer comments in my Java programs than in my C programs.  That is because Java is able to capture more of my meaning and comments would be superfluous.

So, if a language were able to capture all of my intentions, I would never need to write a comment.

Hence the title of this blog.

Existential Types are the flip side of generics

Generic types, as can now be seen in all the major programming languages have a flip side that has yet to be widely appreciated: existential types.

Variables whose types are generic may not be modified within a generic function (or class): they can be kept in variables, they can be passed to other functions (provided they too have been supplied to the generic function), but other than that they are opaque. Again, when a generic function (or class) is used, then the actual type binding for the generic must be provided – although that type may also be generic, in which case the enclosing entity must also be generic.

Existential types are often motivated by modules. A module can be seen to be equivalent to a record with its included functions: except that modules also typically encapsulate types too. Abstract data types are a closely related topic that also naturally connect to existential types (there is an old but still very relevant and readable article on the topic Abstract types have …

Concept Oriented Markup

I have long been frustrated with all the different text mark up languages and word processors that I have used. There are many reasons for this; but the biggest issue is that markups (including very powerful ones like TeX) are not targeted at the kind of stuff I write.

Nowadays, it seems archaic to still be thinking in terms of sections and chapters. The world is linked and that applies to the kind of technical writing that I do.

I believe that the issue is fundamental. A concept like "section" is inherently about the structure of a document. But, what I want to focus on are concepts like "example", "definition", and "function type".

A second problem is that, in a complex environment, the range of documentation that is available to an individual reader is actually composed of multiple sources. Javadoc exemplifies this: an individual library may be documented using Javadoc into a single HTML tree. However, most programmers require access to multiple…